European sturgeon
Sie sind hier: Startseite > Forschungsprojekte > Individuen-basierte Ökologie

Individuen-basierte Ökologie

individuen-basierte ökologie logo und netzwerk

Das Forschungsnetzwerk Individuen-basierte Ökologie ist eine von der Universität Potsdam ins Leben gerufene Forschungsinitiative. Wissenschaftlerinnen und Wissenschaftler aus 28 Arbeitsgruppen und acht universitären und außeruniversitären Forschungsinstituten, die meisten davon Teil des BBIB-Konsortiums, bündeln ihre Kompetenzen aus verschiedenen ökologischen Disziplinen, der Physik, den Datenwissenschaften und der künstlichen Intelligenz, Computersimulationen sowie den Sozialwissenschaften und der digitalen Bildung.

Die Motivation für diesen multidisziplinären Forschungsansatz ist die Einsicht, dass das Anthropozän durch einen beispiellosen, lebensbedrohlichen Verlust an biologischer Vielfalt gekennzeichnet ist, der grundlegende Fortschritte in der ökologischen Theorie und die Integration aller beteiligten Forschungsdisziplinen erfordert, um die sozio-ökologischen Herausforderungen zu bewältigen, die mit dem rasanten Wandel einhergehen, dem unsere Welt heute ausgesetzt ist.

Unser derzeitiges Verständnis ökologischer Prozesse unter dem Druck des globalen Wandels ist jedoch eher begrenzt, da die gängigen ökologischen Konzepte auf Durchschnittsansätzen für Populationen oder Gemeinschaften beruhen. Wir wissen jedoch, dass es die Variation zwischen einzelnen Individuen ist, die häufig dafür verantwortlich ist, wie Arten auf plötzliche Veränderungen reagieren, und die somit letztlich die biologische Vielfalt und die Widerstandsfähigkeit von Ökosystemen bestimmt.

Das Ziel unserer Initiative ist daher ein Paradigmenwechsel von der klassischen "Durchschnittsökologie" hin zu einer individuen-basierten Ökologie. Wir prüfen klassische ökologische Konzepte durch die Linse einer individuen-basierten Ökologie und erweitern oder ersetzen sie, wo nötig. Unsere Forschung konzentriert sich auf das Individuum, um Prozesse auf höheren Organisationsebenen wie Populationen, Artengemeinschaften und schließlich Ökosysteme zu verstehen, vorherzusagen und zu steuern.

Um mehr über die Ziele und Projekte des Netzwerks Individuen-basierte Ökologie zu erfahren, besuchen Sie https://www.uni-potsdam.de/de/individuen-basierte-oekologie

 

Thematische Schlüsselpublikationen im Bereich Individuen-basierte Ökologie:

2023

Fandos G, Talluto M, Fiedler W, Robinson RA, Thorup K & Zurell D (2023). Standardised empirical dispersal kernels emphasise the pervasiveness of long-distance dispersal in European birds. Journal of Animal Ecology. 92(1): 158–170. doi:10.1111/1365-2656.13838

Flegr S, Kuhn J & Scheiter K (2023). When the whole is greater than the sum of its parts: Combining real and virtual experiments in science education. Computers & Education. 197(3):104745. doi:10.1016/J.COMPEDU.2023.104745

Nendel C, Reckling M, Debaeke P, Schulz S, Berg-Mohnicke M, Constantin J, Fronzek S, Jakšić S, Kersebaum KC, Klimek-Kopyra A, Raynal H, Schoving C, Stella T & Battisti R (2023). Area expansion outweighs increasing drought risk for soybean in Europe. Glob. Change Biol. 29(5):1340–1358. doi:10.1111/gcb.16562

Radinger J, Matern S, Klefoth T, Wolter C, Feldhege F, Monk CT, Arlinghaus R (2023). Ecosystem-based management outperforms species-focused stocking for enhancing fish populations. Science. 379:946–951. doi:10.1126/SCIENCE.ADF0895

Reusch C, Paul AA, Fritze M, Kramer-Schadt S & Voigt CC (2023). Wind energy production in forests conflicts with tree-roosting bats. Current Biol. doi: 10.1016/j.cub.2022.12.050

 

2022

Berg-Mohnicke M & Nendel C (2022). A case for object capabilities as the foundation of a distributed environmental model and simulation infrastructure. Environmental Modelling & Software. 156:105471. doi:10.1016/J.ENVSOFT.2022.105471

Eccard JA, Mendes Ferreira C, Peredo Arce A & Dammhahn M (2022). Top-down effects of foraging decisions on local, landscape and regional biodiversity of resources (DivGUD). Ecology Letters. 25(1):3–16. doi:10.1111/ELE.13901

Fütterer T, Scheiter K, Cheng X & Stürmer K (2022). Quality beats frequency? Investigating students’ effort in learning when introducing technology in classrooms. Contemporary Educational Psychology. 69:102042. doi: 10.1016/j.cedpsych.2022.102042

Govaert L, Pantel JH & De Meester L (2022). Quantifying eco-evolutionary contributions to trait divergence in spatially structured systems. Ecological Monographs. e1531. doi:10.1002/ECM.1531

Malchow AK, Hartig F, Reeg J, Kéry M & Zurell D (2022). Demography-environment relationships improve mechanistic understanding of range dynamics under climate change. BioRxiv. 2022.09.23.509134. doi:10.1101/2022.09.23.509134

Milles A, Dammhahn M, Jeltsch F, Schlägel U & Grimm V (2022). Fluctuations in density-dependent selection drive the evolution of a pace-of-life syndrome within and between populations. The American Naturalist. 199(4):E124–E139. doi:10.1086/718473

Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M … Jarić I (2022). Big-data approaches lead to an increased understanding of the ecology of animal movement. Science. 375(6582), abg1780. doi:10.1126/SCIENCE.ABG1780

Omarchevska Y, Lachner A, Richter J & Scheiter K (2022). Do video modeling and metacognitive prompts improve self-regulated scientific inquiry? Educational Psychology Review. 34(2):1025–1061. doi:10.1007/S10648-021-09652-3

Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, Lunshof JE, Gram L, Woodhams DC, Walter J, Roik A, Hentschel U, Thurber RV, Daisley B, Ushijima B, Daffonchio D, Costa R, Keller-Costa T, Bowman JS, Rosado AS, Reid G, Mason CE, Walke JB, Thomas T, Berg G (2022). Harnessing the microbiome to prevent global biodiversity loss. Nature Microbiology. doi: 10.1038/s41564-022-01173-1.

Roeleke M, Schlaegel UE, Gallagher C, Pufelski J, Blohm T, Nathan R, … Voigt CC (2022). Insectivorous bats form mobile sensory networks to optimize prey localization: The case of the common noctule bat. Proceedings of the National Academy of Sciences of the United States of America. 119(33): e2203663119. doi:10.1073/PNAS.2203663119

Rögele A, Scheiter K & Randler C (2022). Can involvement induced by guidance foster scientific reasoning and knowledge of participants of a citizen science project? International Journal of Science Education. 12(2):94–110. doi:10.1080/21548455.2022.2043567

Rohwäder MS & Jeltsch F (2022). Foraging personalities modify effects of habitat fragmentation on biodiversity. Oikos. e09056. doi:10.1111/OIK.09056

Sbragaglia V, Klamser PP, Romanczuk P & Arlinghaus R (2022). Evolutionary impact of size-selective harvesting on shoaling behavior: Individual-level mechanisms and possible consequences for natural and fishing mortality. American Naturalist.199(4):480–495. doi:10.1086/718591

Schampera C, Agha R, Manzi F, Wolinska J (2022). Parasites do not adapt to elevated temperature, as evidenced from experimental evolution of a phytoplankton–fungus system. Biology Letters. 18 (2):20210560. doi: 10.1098/rsbl.2021.0560

Seckler H and Metzler R (2022). Bayesian deep learning for error estimation in the analysis of anomalous diffusion. Nat Comm 13:6717. doi:10.1038/s41467-022-34305-6

Stiegler J, Lins A, Dammhahn M, Kramer-Schadt S, Ortmann S & Blaum N (2022). Personality drives activity and space use in a mammalian herbivore. Movement Ecology. 10:33. doi:10.1186/s40462-022-00333-6

Szangolies L, Rohwäder MS & Jeltsch F (2022). Single Large AND Several Small habitat patches: A community perspective on their importance for biodiversity. Basic and Applied Ecology. doi:10.1016/J.BAAE.2022.09.004

Yang G, Ryo M, Roy J, Lammel D, Ballhausen MB, Jing X, Zhu X, Rillig MC (2022). Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications. 13: 4260. doi: 10.1038/s41467-022-31936-7

Zurell D, König C, Malchow AK, Kapitza S, Bocedi G, Travis J & Fandos G (2022). Spatially explicit models for decision-making in animal conservation and restoration. Ecography. 2022(4):e05787. doi:10.1111/ECOG.05787

 

2021

Baunach M, Chowdhury S, Stallforth P, Dittmann E (2021). The landscape of recombination events that create nonribosomal peptide diversity. Mol. Biol. Evol. 38 (5): 2116-2130. doi: 10.1093/molbev/msab015

Bocedi G, Palmer SCF, Malchow AK, Zurell D, Watts K & Travis JMJ (2021). RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography, 44(10), 1453–1462. doi:10.1111/ECOG.05687

Chaturvedi A, Zhou J, Raeymaekers JAM, Czypionka T, Orsini L, Jackson CE, Spanier KI, Shaw JR, Colbourne JK & De Meester L (2021). Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nature Communications. 12:4306. DOI: 10.1038/s41467-021-24581-z

Fiedler S, Monteiro JAF, Hulvey K, Standish R, Perring MP, Tietjen B (2021). Global change shifts trade-offs among ecosystem functions in woodlands restored for multifunctionality. Journal of Applied Ecology. 58:1705-1717. doi:10.1111/1365-2664.13900

Govaert L, Altermatt F, De Meester L, et al. (2021). Integrating fundamental processes to understand eco-evolutionary community dynamics and patterns. Funct Ecol. 35:2138–2155. doi: 10.1111/1365-2435.13880/SUPPINFO

Kürschner T, Scherer C, Radchuk V, Blaum N & Kramer-Schadt S (2021). Movement can mediate temporal mismatches between resource availability and biological events in host–pathogen interactions. Ecology and Evolution. 11(10):5728–5741. doi:10.1002/ECE3.7478

Malchow AK, Bocedi G, Palmer SCF, Travis JMJ & Zurell D (2021). RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography. 44(10):1443–1452. doi:10.1111/ECOG.05689

Monk CT, Bekkevold D, Klefoth T, Pagel T, Palmer M & Arlinghaus R (2021). The battle between harvest and natural selection creates small and shy fish. Proceedings of the National Academy of Sciences of the United States of America. 118(9): e2009451118. doi:10.1073/PNAS.2009451118

Rillig MC, Ryo M, Lehmann A (2021). Classifying human influences on terrestrial ecosystems. Global Change Biology. 27: 2273-2278. doi:10.1111/gcb.15577

Romero-Mujalli D, Rochow M, Kahl S, Paraskevopoulou S, Folkertsma R, Jeltsch F, Tiedemann R (2021). Adaptive and non-adaptive plasticity in changing environments: implications for sexual species with different life history strategies. Ecology and Evolution. 11:6341-6357. doi:10.1002/ece3.7485

RyoM et al. (2021). Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography. 44 (2):199-205. doi:10.1111/ecog.05360

Wolff S, Hüttel S, Nendel C & Lakes T (2021). Agricultural landscapes in Brandenburg, Germany: An analysis of characteristics and spatial patterns. International Journal of Environmental Research. 15(3):487–507. doi:10.1007/S41742-021-00328-Y

 

2020

Blasius B, Rudolf L, Weithoff G, Gaedke U & Fussmann G (2020). Long-term cyclic persistence in an experimental predator-prey system. Nature 577: 226-230. DOI:10.1038/s41586-019-1857-0

Currie SE, Boonman A, Troxell S, Yovel Y, Voigt CC (2020). Echolocation at high intensity imposes metabolic costs on flying bats. Nature Ecol. Evol. 4(9), 1174-1177. DOI: 10.1038/s41559-020-1249-8

Fournier B, Vázquez-Rivera H, Clappe S, Donelle L, Braga PHP & Peres-Neto PR (2020). The spatial frequency of climatic conditions affects niche composition and functional diversity of species assemblages: the case of Angiosperms. Ecology Letters. 23(2): 254-264. DOI: 10.1111/ele.13425

Fournier B, Frey D & Moretti M (2020). The origin of urban communities: From the regional species pool to community assemblages in city." Journal of Biogeography. 47(3): 615-629. DOI: 10.1111/jbi.13772

Jarić I, Courchamp F, Correia RA, Crowley SL, Essl F, Fischer A, … Jeschke JM (2020). The role of species charisma in biological invasions. Frontiers in Ecology and the Environment. 18(6):345–353. doi:10.1002/FEE.2195

Jeschke JM, Enders M, Bagni M, Aumann D, Jeschke P, Zimmermann M & Heger T (2020). Hi-Knowledge. Retrieved October 10, 2022, from hi-knowledge.org

Liu C, Wolter C, Xian W, Jeschke JM (2020). Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences USA. 117(38):23643-23651. doi: 10.1073/pnas.2004289117

Mazza V, Dammhahn M, Lösche E & Eccard JA (2020). Small mammals in the big city: Behavioural adjustments of non-commensal rodents to urban environments. Global Change Biology. 26(11):6326–6337. doi:10.1111/GCB.15304

Premier J, Fickel J, Heurich M & Kramer-Schadt S (2020). The boon and bane of boldness: Movement syndrome as saviour and sink for population genetic diversity. Movement Ecology. 8(1):1–17. doi:10.1186/S40462-020-00204-Y

Rillig MC, Lehmann A (2020). Microplastic in terrestrial ecosystems. Science. 368: 1430-1431. doi: 10.1126/science.abb5979

Ruland F & Jeschke JM (2020). How biological invasions affect animal behaviour: A global, cross-taxonomic analysis. Journal of Animal Ecology. 89(11):2531–2541. doi:10.1111/1365-2656.13306

Scherer C, Radchuk V, Franz M, Thulke HH, Lange M, … Grimm V (2020). Moving infections: individual movement decisions drive disease persistence in spatially structured landscapes. Oikos. 129(5):651–667. doi:10.1111/OIK.07002

Schirmer A, Hoffmann J, Eccard JA & Dammhahn M (2020). My niche: individual spatial niche specialization affects within- and between-species interactions. Proceedings of the Royal Society B. 287(1918):20192211. doi:10.1098/RSPB.2019.2211

Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, … Jeltsch F (2020). Movement-mediated community assembly and coexistence. Biological Reviews. 95(4):1073–1096. doi:10.1111/BRV.12600

Straka TM, Fritze M & Voigt CC (2020). The human dimensions of a green–green-dilemma:​ Lessons learned from the wind energy — wildlife conflict in Germany. Energy Reports. 6:1768–1777. doi:10.1016/J.EGYR.2020.06.028

Valente L, Phillimore AB, Melo M, Warren BH, Clegg SM, Havenstein K, Tiedemann R, Illera JC, Thébaud C, Aschenbach T, Etienne RS (2020). A simple dynamic model explains island bird diversity worldwide. Nature. 579:92-96.  doi:10.1038/s41586-020-2022-5

Voigt CC, Scholl JM, Bauer J, Teige T, Yovel Y, Kramer-Schadt S & Gras P (2020). Movement responses of common noctule bats to the illuminated urban landscape. Landscape Ecology. 35:189–201. doi:10.1007/s10980-019-00942-4

 

2019

Arlinghaus R, Abbott JK, Fenichel EP, Carpenter SR, Hunt LM, Alós J, Klefoth T, Cooke SJ, Hilborn R, Jensen OP, Wilberg MJ, Post JR, Manfredo MJ (2019). Governing the recreational dimension of global fisheries. Proceedings of the National Academy of Sciences of the United States of America. 116:5209-5213. doi: 10.1073/pnas.1902796116

Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F & Rillig MC (2019). The role of active movement in fungal ecology and community assembly. Movement Ecology. 7(1): 1–12. doi:10.1186/S40462-019-0180-6

Crawford M, Jeltsch F, May F, Grimm V & Schlägel UE (2019). Intraspecific trait variation increases species diversity in a trait-based grassland model. Oikos. 128(3): 441–455. doi:10.1111/OIK.05567

Dakos V, Matthews B, Hendry AP, Levine J, Loeuille N, Norberg J, … De Meester L (2019). Ecosystem tipping points in an evolving world. Nature Ecology & Evolution. 3(3):355–362. doi:10.1038/s41559-019-0797-2

Heger T, Bernard-Verdier M, Gessler A, Greenwood AD, Grossart HP, Hilker M, … Jeschke JM (2019). Towards an integrative, eco-evolutionary understanding of ecological novelty: Studying and communicating interlinked effects of global change. BioScience. 69(11):888–899. doi:10.1093/BIOSCI/BIZ095

Jeltsch F, Grimm V, Reeg J & Schlägel UE (2019). Give chance a chance: from coexistence to coviability in biodiversity theory. Ecosphere. 10(5):02700. doi:10.1002/ECS2.2700

Radchuk V, De Laender F, Cabral JS, Boulangeat I, Crawford M, Bohn F, … Kramer-Schadt S (2019). The dimensionality of stability depends on disturbance type. Ecology Letters. 22(4):674–684. doi:10.1111/ELE.13226

Radchuk V, Reed T, …, Beissinger SR, Courtiol A*, Kramer-Schadt S* (2019). Adaptive responses of animals to climate change are most likely insufficient. NATURE COMMUN. 10:3109. doi:10.1038/s41467-019-10924-4

Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang G (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 366: 886-890. doi: 10.1126/science.aay2832.

Ryo M, Aguilar-Trigueros CA, Pinek L, Muller LAH & Rillig MC (2019). Basic principles of temporal dynamics. Trends in Ecology & Evolution. 34(8):723–733. doi:10.1016/J.TREE.2019.03.007

Schaffner LR, Govaert L, De Meester L et al. (2019). Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat Ecol Evol. 3:1351–1358. doi: 10.1038/s41559-019-0960-9

Schirmer A, Herde A, Eccard JA & Dammhahn M (2019). Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia. 189(3):647–660. doi:10.1007/S00442-019-04365-5

Schlägel UE, Signer J, Herde A, Eden S, Jeltsch F, Eccard JA & Dammhahn M (2019). Estimating interactions between individuals from concurrent animal movements. Methods in Ecology and Evolution. 10(8):1234–1245. doi:10.1111/2041-210X.13235

 

2018

Berg G & Raaijmakers JM (2018). Saving seed microbiomes. The ISME Journal. 12(5):1167–1170. doi:10.1038/s41396-017-0028-2

Fiedler S, Perring MP & Tietjen B (2018). Integrating trait-based empirical and modeling research to improve ecological restoration. Ecology and Evolution. 8(12), 6369–6380. doi:10.1002/ECE3.4043

Heurich M, Schultze-Naumburg J, Piacenza N, Magg N, Červený J, Engleder T, … Kramer-Schadt S (2018). Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biological Conservation. 224:355–365. doi:10.1016/J.BIOCON.2018.05.011

Merckx T, Souffreau C, Kaiser A, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, De Wolf K, Engelen JMT, Fontaneto D, Gianuca AT, Govaert L, Hendrickx F, Higuti J, Lens L, Martens K, Matheve H, Matthysen E, Piano E, Sablon R,  Schön I, Van Doninck K, De Meester L*, Van Dyck H* (2018). Body size shifts in aquatic and terrestrial urban communities. Nature 558: 113+ (*shared senior author). doi:10.1038/s41586-018-0140-0

Monk CT, Barbier M, Romanczuk P, Watson JR, Alós J, Nakayama S, … Arlinghaus R (2018). How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration–exploitation trade-offs. Ecology Letters. 21(6):779–793. doi:10.1111/ELE.12949

Paraskevopoulou S, Tiedemann R, Weithoff G (2018). Differential Response to heat-stress among evolutionary lineages of an aquatic invertebrate species complex. Biol. Lett. 14:20180498. doi:10.1098/rsbl.2018.0498

Ullmann W, Fischer C, Pirhofer-Walzl K, Kramer-Schadt S & Blaum N (2018). Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes. Landscape Ecology. 33(9):1505–1517. doi:10.1007/s10980-018-0676-2

Zurell D, Graham CH, Gallien L, Thuiller W & Zimmermann NE (2018). Long-distance migratory birds threatened by multiple independent risks from global change. Nature Climate Change. 8(11):992–996. doi:10.1038/s41558-018-0312-9

 

2017

Fujitani M, McFall A, Randler C & Arlinghaus R (2017). Participatory adaptive management leads to environmental learning outcomes extending beyond the sphere of science. Science Advances. 3(6):1602516. doi:10.1126/SCIADV.1602516

Stillfried M, Gras P, Börner K, Göritz F, Painer J, Röllig K, … Kramer-Schadt S (2017). Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Frontiers in Ecology and Evolution. 5(DEC), 157. doi:10.3389/FEVO.2017.00157

Valente L, Illera JC, Havenstein K, Pallien T, Etienne RS, Tiedemann R (2017). Equilibrium bird species diversity in Atlantic islands. Current Biology. 27:1660-1668. doi: 10.1016/j.cub.2017.04.053

 

2016

Klauschies T, Vasseur DA & Gaedke U (2016). Trait adaptation promotes species coexistence in diverse predator and prey communities. Ecology and Evolution. 6(12):4141–4159. doi:10.1002/ECE3.2172

Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016). The broad footprint of climate change from genes to biomes to people. Science. 354: 719 + doi: 10.1126/science.aaf7671

Scherer C, Jeltsch F, Grimm V & Blaum N (2016). Merging trait-based and individual-based modelling: an animal functional type approach to explore the responses of birds to climatic and land use changes in semi-arid African savannas. Ecological Modelling. 326: 75-89. doi:10.1016/j.ecolmodel.2015.07.005.

Urban M, Bocedi G, Hendry AP, Mihoub JB, Pe'er G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, Gonzalez A, Hellmann JJ, Holt RD, Huth A, Johst K, Krug CB, Leadley PW, Palmer SCF, Pantel JH, Schmitz A, Zollner PA & Travis JMJ (2016). Improving the forecast for biodiversity under climate change. Science. 353. doi: 10.1126/science.aad8466

 

2015

González-Suárez M, Bacher S & Jeschke JM (2015). Intraspecific trait variation is correlated with establishment success of alien mammals. American Naturalist, 185(6):737–746. doi:10.1086/681105

Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, Dittmann E (2015). Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc. Natl. Acad. Sci. U.S.A. 112: 1862-1867. doi: 10.1073/pnas.1419543112.

Zimmermann J, Higgins SI, Grimm V, Hoffmann J, Linstädter A (2015). Local density effects on individual production are dynamic: insights from natural stands of a perennial savanna grass. Oecologia. 178:1125–1135. doi: 10.1007/s00442-015-3291-9

 

2014

Palyulin VV, Chechkin AV & Metzler R (2014). Lévy flights do not always optimize random blind search for sparse targets. Proceedings of the National Academy of Sciences of the United States of America. 111(8):2931–2936. doi:10.1073/PNAS.1320424111

 

2013

Jeltsch F, Bonte D, Pe'er G., ..., Blaum N, ..., Eccard J, ... & Bauer S (2013). Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics. Movement Ecology. 1(1):1-13. doi: 10.1186/2051-3933-1-6

Kramer-Schadt S, Niedballa J, …, Hofer H, Wilting A (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. DIV DISTR. 19: 1366–1379. doi: 10.1111/ddi.12096

Linstädter A, Kemmerling B, Baumann G, Kirscht H (2013). The importance of being reliable – Local ecological knowledge and management of forage plants in a dryland pastoral system (Morocco). J. Arid Environ. 95:30–40. doi:10.1016/j.jaridenv.2013.03.008.

 

2012

Boit A, Martinez ND, Williams RJ & Gaedke U (2012). Mechanistic theory and modelling of complex food web dynamics in Lake Constance. Ecol. Lett. 15:594-602. doi:10.1111/j.1461-0248.2012.01777.x

Sutter DAH, Suski CD, Philipp DP, Klefoth T, Wahl DH, Kersten P, Cooke SJ, Arlinghaus R (2012). Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences. 109:20960-20965. doi: 10.1073/pnas.1212536109

 

2007

Jørgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gårdmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD (2007). Managing evolving fish stocks. Science. 318:1247-1248. doi: 10.1126/science.1148089.

Scheiter K & Gerjets P (2007). Learner control in hypermedia environments. Educational Psychology Review. 19 (3):285-307.  doi:10.1007/s10648-007-9046-3